IEA World Energy Outlook

In September the International Energy Agency released the edition of the 2020 World Energy Outlook. For the first time it has pegged solar as the king of future electricity markets. Conversely, nuclear power looks set to continue its decline. Last year, according to the IEA nuclear power capacity fell by 3,900 megawatts (MW) or 1%. This year, nuclear is performing even worse. The World Energy Outlook reports that nuclear power declined by 3.5% in the first quarter of 2020 and anticipates a decline of 3% for 2020 (compared to 2019).

And it only gets worse from there. With an ageing fleet of reactors, many of them set to be shut down over the next 10-20 years, the World Energy Outlook notes that nuclear power could fall from 280,000 MW now to just 90,000 MW by 2040. One quarter of current nuclear capacity is set to shut down over the next five years.

The IEA notes that extending the lifespan of ageing reactors for 10 years ranges from US$500 million to US$1 billion per reactor.

The Bulletin of Atomic Scientists has described the risk of nuclear reactors as a bathtub curve – new reactors have a high risk at the very beginning of their life-cycles where design and construction faults may emerge, then a period of relative safety, then risks begin to increase with the age of reactors. They document a number of examples in the US where utilities attempted to retrofit ageing reactors only to find intractable problems, prohibitive costs and in the end opted for permanent closure

Another recent report, the World Nuclear Industry Status Report 2020, states that that 176 additional new reactors would have to be connected to the grid just to account for closures over the next decade – three times the rate achieved over the past decade (58 reactor startups between 2010 and 2019). The nuclear industry is running just to stand still. In future energy scenario’s nuclear is simply too expensive to matter.

World Energy Outlook meme, solar too cheap to meter.

John Quiggin, Professor of Economics at University of Queensland, said in response to the IEA WEO report: “Once a solar module has been installed, a zero rate of interest means that the electricity it generates is virtually free. Spread over the lifetime of the module, the cost is around 2c/kwh (assuming $1/watt cost, 2000 operating hours per year and a 25-year lifetime). That cost would be indexed to the rate of inflation, but would probably never exceed 3c/kwh. There is, then, a real possibility that solar PV and other renewable technologies could fulfil the promise made decades ago by the promoters of nuclear power: that it will deliver electricity “too cheap to meter”. (Even with access to cheap capital, nuclear power never delivered on that promise.)”